上海纯水设备发布氨氮废水处理技术详解
【上海纯水设备行业新闻】
氨氮废水处置技术有哪些?本文为您介绍:
1吹脱法
碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH气液比有关。
而控制吹脱效率高低的关键因素是温度、气液比和pH
水温大于25℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达20004000mg/L垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。
采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882mg/L进行了处置试验。最佳工艺条件为pH=11超声吹脱时间为40min气水比为10001试验结果标明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与激进吹脱技术相比,氨氮的去除率增加了17%164%90%以上,吹脱后氨氮在100mg/L以内。
为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。上海纯水设备同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。
处置经UA SB预处理的垃圾渗滤液(2240mg/L时发现在pH=11.5反应时间为24h仅以120r/min速度梯度进行机械搅拌,氨氮去除率便可达95%而在pH=12时通过曝气脱氨氮,第17小时pH开始下降,氨氮去除率仅为85%据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。
2沸石吸附
利用沸石中的阳离子与废水中的NH4进行交换以达到脱氮的目的沸石一般被用于处置低浓度含氨废水或含微量重金属的废水。然而,蒋建国等探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果标明,每克沸石具有吸附15.5mg氨氮的极限潜力,当沸石粒径为3016目时,氨氮去除率达到78.5%且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的
用沸石离子交换法处置经厌氧消化过的猪肥废水时发现Na-ZeoMg-ZeoCa-Zeok-Zeo中Na-Zeo沸石效果最好,其次是Ca-Zeo增加离子交换床的高度可以提高氨氮去除率,综合考虑经济原因和水力条件,床高18cmH/D=4相对流量小于7.8BV/h比较适合的尺寸。离子交换法受悬浮物浓度的影响较大。
应用沸石脱氨法必需考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,发生的氨气必需进行处置。
3膜分离技术
利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。蒋展鹏等采用电渗析法和聚丙烯(PP中空纤维膜法处置高浓度氨氮无机废水可取得良好的效果。电渗析法处置氨氮废水20003000mg/L去除率可在85%以上,同时可获得8.9%浓氨水。此法工艺流程简单、不消耗药剂、运行过程中消耗的电量与废水中氨氮浓度成正比。PP中空纤维膜法脱氨效率>90%回收的硫酸铵浓度在25%左右。运行中需加碱,加碱量与废水中氨氮浓度成正比。
乳化液膜是种以乳液形式存在液膜具有选择透过性,可用于液-液分离。 常州纯水设备分离过程通常是以乳化液膜(例如煤油膜)为分离介质,油膜两侧通过NH3浓度差和扩散传送为推动力,使NH3进入膜内,从而达到分离的目的
4MA P沉淀法
主要是利用以下化学反应:
Mg2+NH4+PO43-=MgNH4PO4↓
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2+][NH4+][PO43-]>2.510–13时可生成磷酸铵镁(MA P除去废水中的氨氮。穆大纲等采用向氨氮浓度较高的工业废水中投加MgCl2?6H2O和Na2HPO4?12H2O生成磷酸铵镁沉淀的方法,以去除其中的高浓度氨氮。结果标明,pH为8.91Mg2NH4PO43-摩尔比为1.25:1:1反应温度为25℃,反应时间为20min沉淀时间为20min条件下,氨氨质量浓度可由9500mg/L降低到460mg/L去除率达到95%以上。
由于在多数废水中镁盐的含量相对于磷酸盐和氨氮会较低,尽管生成的磷酸铵镁可以做为农肥而抵消一部分成本,投加镁盐的费用仍成为限制这种方法推行的主要因素。海水取之不尽,并且其中含有大量的镁盐。Kumashiro等以海水做为镁离子源试验研究了磷酸铵镁结晶过程。盐卤是制盐副产品,主要含MgCl2和其他无机化合物。Mg2约为32g/L为海水的27倍。Lee等用MgCl2海水、盐卤分别做为Mg2源以磷酸铵镁结晶法处置养猪场废水,结果标明,pH最重要的控制参数,当终点pH≈9.6时,反应在10min内即可结束。由于废水中的N/P不平衡,与其他两种Mg2源相比,盐卤的除磷效果相同而脱氮效果略差。
5化学氧化法
利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是发生的余氯会对鱼类有影响,故必需附设除余氯设施。
溴化物存在情况下,臭氧与氨氮会发生如下类似折点加氯的反应:
Br-+O3+H+HBrO+O2
NH3+HBrONH2Br+H2O
NH2Br+HBrONHBr2+H2O
NH2Br+NHBr2N2↑+3Br-+3H+
用一个有效容积32L连续曝气柱对合成废水(氨氮600mg/L进行试验研究,探讨Br/NpH以及初始氨氮浓度对反应的影响,以确定去除最多的氨氮并形成最少的NO3-最佳反应条件。发现NFR出水NO3--N与进水氨氮之比)对数坐标中与Br-/N成线性相关关系,Br-/N>0.4氨氮负荷为3.64.0kg/m3?d时,氨氮负荷降低则NFR降低。出水pH=6.0时,NFR和BrO--Br有毒副产物)最少。BrO--Br可由Na2SO3定量分解,Na2SO3投加量可由ORP控制。
6生化联合法
物化方法在处置高浓度氨氮废水时不会因为氨氮浓度过高而受到限制,但是不能将氨氮浓度降到足够低(如100mg/L以下)而生物脱氮会因为高浓度游离氨或者亚硝酸盐氮而受到抑制。实际应用中采用生化联合的方法,生物处置前先对含高浓度氨氮的废水进行物化处置。
研究采用吹脱-缺氧-好氧工艺处置含高浓度氨氮垃圾渗滤液。结果标明,吹脱条件控制在pH=95吹脱时间为12h时,吹脱预处置可去除废水中60%以上的氨氮,再经缺氧-好氧生物处置后对氨氮(由1400mg/L降至19.4mg/L和COD去除率>90%
Horan等用生物活性炭流化床处置垃圾渗滤液(COD为8002700mg/L氨氮为220800mg/L研究结果标明,氨氮负荷0.71kg/m3?d时,硝化去除率可达90%以上,COD去除率达70%BOD全部去除。以石灰絮凝沉淀 空气吹脱做为预处置手段提高渗滤液的可生化性,随后的好氧生化处置池中加入吸附剂(粉末状活性炭和沸石)发现吸附剂在05g/L时COD和氨氮的去除效率均随吸附剂浓度增加而提高。对于氨氮的去除效果沸石要优于活性炭。
膜-生物反应器技术(MBR将膜分离技术与传统的废水生物反应器有机组合形成的一种新型高效的污水处置系统。MBR处置效率高,,上海水处理设备出水可直接回用,设备少战地面积小,剩余污泥量少。其难点在于坚持膜有较大的通量和防止膜的渗漏。李红岩等利用一体化膜生物反应器进行了高浓度氨氮废水硝化特性研究。研究结果标明,当原水氨氮浓度为2000mg/L进水氨氦的容积负荷为2.0kg/m3?d时,氨氮的去除率可达99%以上,系统比较稳定。反应器内活性污泥的比硝化速率在半年的时间内基本稳定在0.36/d左右。
7激进生物脱氮法
保守的生物脱氮技术始于上世纪30年代,真正应用于20世纪70年代。自Barth三段生物脱氮工艺的开创,A/O工艺、序批式工艺等脱氮工艺相继被提出并应用于工程实际。
三段生物脱氮工艺
三段生物脱氮工艺流程如图所示,该工艺是将有机物降解、硝化作用以及反硝化作用三个阶段独立开来,每一阶段后面都有各自独立的沉淀池和污泥回流系统。第一段曝气池的主要作用是代谢分解有机物,并使有机氮氨化。第二段硝化池主要进行硝化反应,将氨氮氧化,同时需投加碱度以维持一定的pH值。第三段是反硝化反应器,硝态氮在缺氧条件下被还原为N2装置搅拌装置使污泥混合液呈悬碳源以满足浮状态,并外加反硝化反应所需的碳源。
A /O生物脱氮工艺
A /O生物脱氮工艺如图所示,该工艺将缺氧段置于系统前端,其发生反硝化反应产生的碱度能够少量补充硝化反应之需。另外,缺氧池中反硝化反应利用原废水中的有机物为碳源可以减少补充碳源的投加甚至不加。通过内循环将硝化反应产生的硝态氮转移到缺氧池进行反硝化反应,硝态氮中氧作为电子受体,供给反硝化菌的呼吸作用和生命活动,并完成脱氮工序。
A/O生物脱氮工艺中,硝化液回流比对系统的脱氮效果影响很大。若回流比控制过低,则无法提供充分的硝态氮进行反应,使硝化作用不完全,进而影响脱氮效果;若控制过高,则导致硝化液与反硝化菌接触时间减短,从而降低脱氮效率。因此,实际的运行过程中需要控制适当的硝化液回流比,使系统脱氮效果达到最佳水平。
序批式脱氮工艺(例如CA SS
序批式脱氮工艺与A/O工艺相比,其运行方式有所不同,但在脱氮反应机理上基本与A/O生物脱氮工艺一致。序批式工艺为间歇的运行方式,采用一个独立的反应池替代了保守的由多个具有不同功能的反应区组合而成的A/O生物脱氮反应器。序批式脱氮工艺以时间的交替方式实现了缺氧/好氧环境,取代了激进空间上的缺氧/好氧,因其具有简单的结构和灵活的操作方式而倍受研究者的关注和研究。
7新型生物脱氮法
近年来国内外呈现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化。
1.短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化(将氨氮氧化至亚硝酸盐氮即进行反硝化)不只可以节省氨氧化需氧量而且可以节省反硝化所需炭源。Ruiza等用合成废水(模拟含高浓度氨氮的工业废水)试验确定实现亚硝酸盐积累的最佳条件。要想实现亚硝酸盐积累,pH不是一个关键的控制参数,因为pH6.458.95时,全部硝化生成硝酸盐,pH<6.45或pH>8.95时发生硝化受抑,氨氮积累。当DO=0.7mg/L时,可以实现65%氨氮以亚硝酸盐的形式积累并且氨氮转化率在98%以上。DO<0.5mg/L时发生氨氮积累,DO>1.7mg/L时全部硝化生成硝酸盐。刘俊新等对低碳氮比的高浓度氨氮废水采用亚硝玻型和硝酸型脱氮的效果进行了对比分析。试验结果标明,亚硝酸型脱氮可明显提高总氮去除效率,氨氮和硝态氮负荷可提高近1倍。此外,pH和氨氮浓度等因素对脱氮类型具有重要影响。
短程硝化反硝化处置焦化废水的中试结果标明,进水COD氨氮、TN和酚的浓度分别为1201.6510.4540.1110.4mg/L时,出水COD氨氮、TN和酚的平均浓度分别为197.114.2181.50.4mg/L相应的去除率分别为83.6%97.2%66.4%99.6%与惯例生物脱氮工艺相比,该工艺氨氮负荷高,较低的C/N值条件下可使TN去除率提高。
2.厌氧氨氧化(ANA MMOX
厌氧氨氧化(ANA MMOX指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。
A NA MMOX生化反应式为:
NH4NO2-N2↑ 2H2O
A NA MMOX菌是专性厌氧自养菌,因而非常适合处置含NO2-低C/N氨氮废水。与激进工艺相比,基于厌氧氨氧化的脱氮方式工艺流程简单,不需要外加有机炭源,防止二次污染,又很好的应用前景。厌氧氨氧化的应用主要有两种:CA NON工艺和与中温亚硝化(SHA RON结合,构成SHA RON-A NA MMOX联合工艺。
3.全程自养脱氮(CA NON
CA NON工艺是限氧的条件下,利用完全自养性微生物将氨氮和亚硝酸盐同时去除的一种方法,从反应形式上看,SHA RON和ANA MMOX工艺的结合,同一个反应器中进行。孟了等发现深圳市下坪固体废弃物填埋场渗滤液处理厂,溶解氧控制在1mg/L左右,进水氨氮<800mg/L氨氮负荷<0.46kgNH4/m3?d条件下,可以利用SBR反应器实现CA NON工艺,氨氮的去除率>95%总氮的去除率>90%
Slieker等的研究标明ANA MMOX和CA NON过程都可以在气提式反应器中运转良好,并且达到很高的氮转化速率。控制溶解氧在0.5mg/L左右,气提式反应器中,ANA MMOX过程的脱氮速率达到8.9kgN/m3?d而CA NON过程可以达到1.5kgN/m3?d
4.同步硝化反硝化
根据激进生物脱氮理论,脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化两个过程需要在两个隔离的反应器中进行,或者在时间或空间上造成交替缺氧和好氧环境的同一个反应器中;实际上,较早的时期,一些没有明显的缺氧及厌氧段的活性污泥工艺中,人们就层多次观察到氮的非同化损失现象,曝气系统中也曾多次观察到氮的消失。
这些处置系统中,硝化和反硝化反应往往发生在同样的处置条件及同一处置空间内,因此,这些现象被称为同步硝化/反硝化(SND目前同步硝化反硝化的代表工艺是MBBR
5.好氧反硝化
激进脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必需在缺氧环境下。近年来,好氧反硝化现象不时被发现和报道,逐渐受到人们关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化(如Robertson等分离、常州水处理设备筛选出的Tpantotropha.LMD82.5这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
序批式反应器处置氨氮废水,试验结果验证了好氧反硝化的存在好氧反硝化脱氮能力随混合液溶解氧浓度的提高而降低,当溶解氧浓度为0.5mg/L时,总氮去除率可达到66.0%
连续动态试验研究标明,对于高浓度氨氮渗滤液,普通活性污泥达的好氧反硝化工艺的总氮去除串可达10%以上。硝化反应速率随着溶解氧浓度的降低而下降;反硝化反应速率随着溶解氧浓度的降低而上升。硝化及反硝化的动力学分析标明,溶解氧为0.14mg/L左右时会出现硝化速率和反硝化速率相等的同步硝化反硝化现象。其速率为4.7mg/L?h硝化反应KN=0.37mg/L;反硝化反应KD=0.48mg/L
反硝化过程中会产生N2O一种温室气体,发生新的污染,其相关机制研究还不够深入,许多工艺仍在实验室阶段,需要进一步研究才干有效地应用于实际工程中。另外,还有诸如全程自养脱氮工艺、同步硝化反硝化等工艺仍处在试验研究阶段,都有很好的应用前景。
- 上一篇:关于进一步提升城镇和农村污水处理设施的报告 2019/7/15
- 下一篇:上海纯水设备厂家发布我国海水淡化的现状及远景 2019/7/13